Excitonic Lasing in Solution-Processed Subwavelength Nanosphere Assemblies

Academic Article

Abstract

  • Lasing in solution-processed nanomaterials has gained significant interest because of the potential for low-cost integrated photonic devices. Still, a key challenge is to utilize a comprehensive knowledge of the system's spectral and temporal dynamics to design low-threshold lasing devices. Here, we demonstrate intrinsic lasing (without external cavity) at low-threshold in an ultrathin film of coupled, highly crystalline nanospheres with overall thickness on the order of λ/4. The cavity-free geometry consists of μ35 nm zinc oxide nanospheres that collectively localize the in-plane emissive light fields while minimizing scattering losses, resulting in excitonic lasing with fluence thresholds at least an order of magnitude lower than previous UV-blue random and quantum-dot lasers (<75 μJ/cm2). Fluence-dependent effects, as quantified by subpicosecond transient spectroscopy, highlight the role of phonon-mediated processes in excitonic lasing. Subpicosecond evolution of distinct lasing modes, together with three-dimensional electromagnetic simulations, indicate a random lasing process, which is in violation of the commonly cited criteria of strong scattering from individual nanostructures and an optically thick sample. Subsequently, an electron-hole plasma mechanism is observed with increased fluence. These results suggest that coupled nanostructures with high crystallinity, fabricated by low-cost solution-processing methods, can function as viable building blocks for high-performance optoelectronics devices.
  • Digital Object Identifier (doi)

    Author List

  • Appavoo K; Liu X; Menon V; Sfeir MY
  • Start Page

  • 2004
  • End Page

  • 2010
  • Volume

  • 16
  • Issue

  • 3