The phosphorylation state of Ser-129 in human α-synuclein determines neurodegeneration in a rat model of Parkinson disease

Academic Article

Abstract

  • Studies have shown that α-synuclein (α-syn) deposited in Lewy bodies in brain tissue from patients with Parkinson disease (PD) is extensively phosphorylated at Ser-129. We used recombinant Adeno-associated virus (rAAV) to overexpress human wild-type (wt) α-syn and two human α-syn mutants with site-directed replacement of Ser-129 to alanine (S129A) or to aspartate (S129D) in the nigrostriatal tract of the rat to investigate the effect of Ser-129 phosphorylation state on dopaminergic neuron pathology. Rats were injected with rAAV2/5 vectors in the substantia nigra pars compacta (SNc) on one side of the brain; the other side remained as a nontransduced control. The level of human wt or mutant α-syn expressed on the injected side was about four times the endogenous rat α-syn. There was a significant reduction of dopaminergic neurons in the SNc and dopamine (DA) and tyrosine hydroxylase (TH) levels in the striatum of all S129A-treated rats as early as 4 wk postinjection. Nigral DA pathology occurred more slowly in the wt-injected animals, but by 26 wk the wt α-syn group lost nigral TH neurons equivalent to the mutated S129A group at 8 wk. In stark contrast, we did not observe any pathological changes in S129D-treated animals. Therefore, the nonphosphorylated form of S129 exacerbates α-syn-induced nigral pathology, whereas Ser-129 phosphorylation eliminates α-syn-induced nigrostriatal degeneration. This suggests possible new therapeutic targets for Parkinson Disease. © 2008 by The National Academy of Sciences of the USA.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Gorbatyuk OS; Li S; Sullivan LF; Chen W; Kondrikova G; Manfredsson FP; Mandel RJ; Muzyczka N
  • Start Page

  • 763
  • End Page

  • 768
  • Volume

  • 105
  • Issue

  • 2