Adult expression of PGC-1α and -1β in skeletal muscle is not required for endurance exercise-induced enhancement of exercise capacity

Academic Article

Abstract

  • © 2016 the American Physiological Society. Exercise has been shown to be the best intervention in the treatment of many diseases. Many of the benefits of exercise are mediated by adaptions induced in skeletal muscle. The peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family of transcriptional coactivators has emerged as being key mediators of the exercise response and is considered to be essential for many of the adaptions seen in skeletal muscle. However, the contribution of the PGC-1s in skeletal muscle has been evaluated by the use of either whole body or congenital skeletal muscle-specific deletion. In these models, PGC-1s were never present, thereby opening the possibility to developmental compensation. Therefore, we generated an inducible muscle-specific deletion of PGC-1α and -1β (iMyo-PGC-1DKO), in which both PGC-1α and-β can be deleted specifically in adult skeletal muscle. These iMyo-PGC-1DKO animals were used to assess the role of both PGC-1α and -1β in adult skeletal muscle and their contribution to the exercise training response. Untrained iMyo-PGC-1DKO animals exhibited a timedependent decrease in exercise performance 8 wk postdeletion, similar to what was observed in the congenital muscle-specific PGC-1DKOs. However, after 4 wk of voluntary training, the iMyo-PGC-1DKOs exhibited an increase in exercise performance with a similar adaptive response compared with control animals. This increase was associated with an increase in electron transport complex (ETC) expression and activity in the absence of PGC-1α and -1β expression. Taken together these data suggest that PGC-1α and -1β expression are not required for training-induced exercise performance, highlighting the contribution of PGC-1-independent mechanisms.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Ballmann C; Tang Y; Bush Z; Rowe GC
  • Start Page

  • E928
  • End Page

  • E938
  • Volume

  • 311
  • Issue

  • 6