Continuous flow microfluidic device for rapid erythrocyte lysis

Academic Article


  • Leukocyte isolation from whole blood to study inflammation requires the removal of contaminating erythrocytes. Leukocytes, however, are sensitive to prolonged exposure to hyper/hypoosmotic solutions, temperature changes, mechanical manipulation, and gradient centrifugation. Even though care is taken to minimize leukocyte activation and cell loss during erythrocyte lysis, it is often not possible to completely avoid it. Most procedures for removal of contaminating erythrocytes from leukocyte preparations are designed for bulk processing of blood, where the sample is manipulated for longer periods of time than necessary at the single-cell level. Ammonium chloride-mediated lysis is the most commonly used method to obtain enriched leukocyte populations but has been shown to cause some activation and selective loss of certain cell types. The leukocyte yield and subsequent activation status of residual leukocytes after NH4Cl-mediated lysis have been shown to depend on the time of exposure to the lysis buffer. We have developed a microfluidic lysis device that deals with erythrocyte removal at nearly the single-cell level. We can achieve complete lysis of erythrocytes and ∼100% recovery of leukocytes where the cells are exposed to an isotonic lysis buffer for less than 40 s, after which the leukocytes are immediately returned to physiological conditions. Theoretically, this process can be made massively parallel to process several milliliterss of whole blood to obtain a pure leukocyte population in less than 15 min.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Sethu P; Anahtar M; Moldawer LL; Tompkins RG; Toner M
  • Start Page

  • 6247
  • End Page

  • 6253
  • Volume

  • 76
  • Issue

  • 21