Epstein-barr virus IL-10 engages IL-10R1 by a two-step mechanism leading to altered signaling properties

Academic Article


  • Human interleukin-10 (hIL-10) is a pleiotropic cytokine that is able to suppress or activate cellular immune responses to protect the host from invading pathogens. Epstein-Barr virus (EBV) encodes a viral IL-10 (ebvIL-10) in its genome that has retained the immunosuppressive activities of hIL-10 but lost the ability to induce immunostimulatory activities on some cells. These functional differences are at least partially due to the ∼1000-fold difference in hIL-10 and ebvIL-10 binding affinity for the IL-10R1·IL-10R2 cell surface receptors. Despite weaker binding to IL-10R1, ebvIL-10 is more active than hIL-10 in inducing B-cell proliferation. To explore this counterintuitive observation further, a series of monomeric and dimeric ebvIL-10·hIL-10 chimeric proteins were produced and characterized for receptor binding and cellular proliferation on TF-1/hIL-10R1 cells that express high levels of the IL-10R1 chain. On this cell line, monomeric chimeras elicited cell proliferation in accordance with how tightly they bound to the IL-10R1 chain. In contrast, dimeric chimeras exhibiting the highest affinity for IL-10R1 exhibited reduced proliferative activity. These distinct activity profiles are correlated with kinetic analyses that reveal that the ebvIL-10 dimer is impaired in its ability to form a 1:2 ebvIL-10·IL-10R1 complex. As a result, the ebvIL-10 dimer functions like a monomer at low IL-10R1 levels, which prevents efficient signaling. At high IL-10R1 levels, the ebvIL-10 dimer is able to induce signaling responses greater than hIL-10. Thus, the ebvIL-10 dimer scaffold is essential to prevent activation of cells with low IL-10R1 levels but to maintain or enhance activity on cells with high IL-10R1 levels. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Yoon SI; Jones BC; Logsdon NJ; Harris BD; Kuruganti S; Walter MR
  • Start Page

  • 26586
  • End Page

  • 26595
  • Volume

  • 287
  • Issue

  • 32