Epidermal growth factor-like repeats of thrombospondins activate phospholipase Cγ and increase epithelial cell migration through indirect epidermal growth factor receptor activation

Academic Article


  • Thrombospondin (TSP) 1 is a trimeric multidomain protein that contains motifs that recognize distinct host cell receptors coupled to multiple signaling pathways. Selected TSP1-induced cellular responses are tyrosine kinasedependent, and TSP1 contains epidermal growth factor (EGF)-like repeats. Specific receptor interactions or functions for the EGF-like repeats have not been identified. We asked whether one or more biological responses to TSP1 might be explained through EGF receptor (EGFR) activation. In A431 cells, TSP1 increased autophosphorylation of Tyr-1068 of EGFR in a dose- and time-dependent manner. The ability of TSP1 to activate EGFR was replicated by the tandem EGF-like repeats as a recombinant protein. The three EGFlike repeats alone produced a high level of Tyr-1068 phosphorylation. EGF-like repeats from TSP2 and TSP4 also activated EGFR. Tyr-1068 phosphorylation was less when individual EGF-like repeats were tested or flanking sequences were added to the three EGF-like repeats. TSP1 and its EGF-like repeats also increased phosphorylation of EGFR Tyr-845, Tyr-992, Tyr-1045, Tyr-1086, and Tyr-1173, activated phospholipase Cγ, and increased cell migration. No evidence was found for binding of the EGF-like repeats to EGFR. Instead, EGFR activation in response to TSP1 or its EGF-like repeats required matrix metalloprotease activity, including activity of matrix metalloprotease 9. Access to the ligand-binding portion of the EGFR ectodomain was also required. These findings suggest release of an endogenous EGFR ligand in response to ligation of a second unknown receptor by the TSPs. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Liu A; Garg P; Yang S; Gong P; Pallero MA; Annis DS; Liu Y; Passaniti A; Mann D; Mosher DF
  • Start Page

  • 6389
  • End Page

  • 6402
  • Volume

  • 284
  • Issue

  • 10