Infectivity enhanced adenoviral-mediated mda-7/IL-24 gene therapy for ovarian carcinoma

Academic Article


  • Objective. Melanoma differentiation associated gene-7 [mda-7/Interleukin (IL)-24] has been identified as a novel anti-cancer agent, which specifically induces apoptosis in cancer cells but not in normal epithelial, endothelial and fibroblast cells. The objective of this study was to evaluate the anti-tumor effect of adenovirus-mediated mda-7/IL-24 (Ad.mda-7) gene therapy in ovarian carcinoma and further improve anti-tumor effect by enhancing infectivity of Ad.mda-7. Methods. A panel of human ovarian carcinoma cells, OV-4, HEY, SKOV3, SKOV3.ip1 and control normal human mesothelial cells, were infected by a replication deficient recombinant adenovirus encoding mda-7/IL-24 and control virus Ad.CMV.Luc. After 72 h, apoptosis was evaluated by TUNEL and Hoechst staining and further quantified by fluorescent activated cell sorter (FACS) analysis. Infectivity of Ad.mda-7 was enhanced by retargeting it to CD40 or EGF receptors overexpressed on ovarian cancer cells. Subsequently, enhancement in apoptosis of CD40- or epidermal growth factor receptor (EGFR)-retargeted Ad.mda-7 was evaluated. Results. Adenoviral-mediated delivery of mda-7 induces apoptosis ranging from 10-23% in human ovarian cancer cells tested with the highest percentage of apoptosis noted in SKOV3 cells. Minimal apoptosis was noted in normal mesothelial cells. CD40- or EGFR-retargeted Ad.mda-7 increased apoptosis by 10-32% when compared to that achieved with untargeted Ad.mda-7. Conclusion. Ad.mda-7 exhibits ovarian cancer-specific apoptosis, but does not affect normal human mesothelial cells. Infectivity enhanced CD40- and EGFR-retargeted Ad.mda-7 augments apoptosis induction, thus increasing the therapeutic index and translational potential of Ad.mda-7 gene therapy. © 2004 Elsevier Inc. All rights reserved.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Leath CA; Kataram M; Bhagavatula P; Gopalkrishnan RV; Dent P; Fisher PB; Pereboev A; Carey D; Lebedeva IV; Haisma HJ
  • Start Page

  • 352
  • End Page

  • 362
  • Volume

  • 94
  • Issue

  • 2