C-reactive protein promotes diabetic kidney disease in a mouse model of type 1 diabetes

Academic Article

Abstract

  • Aims/hypothesis: Although C-reactive protein (CRP) has been implicated as a risk factor in diabetes, its pathogenic importance in diabetic kidney disease (DKD) remains unclear. The present study investigated the potential role of CRP in DKD. Methods: Diabetes was induced by streptozotocin in human CRP transgenic and wild-type mice for assessment of kidney injury at 24 weeks by real-time PCR, immunohistochemistry and western blot analysis. In vitro, the pathogenic effect of CRP was investigated using human kidney tubular epithelial cells cultured with high glucose and/or CRP. Results: We found that CRP transgenic mice developed much more severe diabetic kidney injury than wild-type mice, as indicated by a significant increase in urinary albumin excretion and kidney injury molecule-1 abundance, enhanced infiltration of macrophages and T cells, and upregulation of pro-inflammatory cytokines (IL-1β, TNFα) and extracellular matrix (collagen I, III and IV). Enhanced renal inflammation and fibrosis in CRP transgenic mice was associated with upregulation of CRP receptor, CD32a, and over-activation of the TGF-β/SMAD and nuclear factor κB signalling pathways. In vitro, CRP significantly upregulated pro-inflammatory cytokines (IL-1β, TNFα, monocyte chemoattractant protein-1 [MCP-1]) and pro-fibrotic growth factors (TGF-β1, connective tissue growth factor [CTGF]) via CD32a/64. CRP was induced by high glucose, which synergistically promoted high glucose-mediated renal inflammation and fibrosis. Conclusions/interpretation: CRP is not only a biomarker, but also a mediator in DKD. Enhanced activation of TGF-β/SMAD and nuclear factor κB signalling pathways may be the mechanisms by which CRP promotes renal inflammation and fibrosis under diabetic conditions. © 2011 Springer-Verlag.
  • Published In

  • Diabetologia  Journal
  • Digital Object Identifier (doi)

    Author List

  • Liu F; Chen HY; Huang XR; Chung ACK; Zhou L; Fu P; Szalai AJ; Lan HY
  • Start Page

  • 2713
  • End Page

  • 2723
  • Volume

  • 54
  • Issue

  • 10