Inflammatory and protein metabolism signaling responses in human skeletal muscle after burn injury

Academic Article

Abstract

  • Severe burn injuries lead to a prolonged hypercatabolic state resulting in dramatic loss of skeletal muscle mass. Postburn muscle loss is well documented but the molecular signaling cascade preceding atrophy is not. The purpose of this study is to determine the response to burn injury of signaling pathways driving muscle inflammation and protein metabolism. Muscle biopsies were collected in the early flow phase after burn injury from the vastus lateralis of a noninjured leg in patients with 20 to 60% TBSA burns and compared with uninjured, matched controls. Circulating levels of proinflammatory cytokines were also compared. Immunoblotting was performed to determine the protein levels of key signaling components for translation initiation, proteolysis, and tumor necrosis factor/nuclear factor kappa B (NFκB)and interleukin (IL)-6/STAT3 signaling. Burn subjects had significantly higher levels of circulating proinflammatory cytokines, with no difference in muscle STAT3 activity and lower NFκB activity. No differences were found in any translational signaling components. Regarding proteolytic signaling in burn, calpain-2 was 47% higher, calpastatin tended to be lower, and total ubiquitination was substantially higher. Surprisingly, a systemic proinflammatory response 3 to 10 days postburn did not lead to elevated muscle STAT3 or NFκB signaling. Signaling molecules governing translation initiation were unaffected, whereas indices of calcium-mediated proteolysis and ubiquitin-proteasome activity were upregulated. These novel findings are the first in humans to suggest that the net catabolic effect of burn injury in skeletal muscle (ie, atrophy) may be mediated, at least during the early flow phase, almost entirely by an increased proteolytic activity in the absence of suppressed protein synthesis signaling. © 2012 The American Burn Association.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Merritt EK; Cross JM; Bamman MM
  • Start Page

  • 291
  • End Page

  • 297
  • Volume

  • 33
  • Issue

  • 2