Modulation of neuronal calcium signaling by neurotrophic factors

Academic Article


  • Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin (NT) family, is emerging as a key mediator of activity-dependent modifications of synaptic strength in the central nervous system. Because of the well-established role of post-synaptic elevations in concentrations of free Ca2+ ions ([Ca2+]i) in synaptic plasticity, we investigated the hypothesis that BDNF exerts its neuromodulatory effects on hippocampal pyramidal neurons by enhancing dendritic [Ca2+]i transients mediated by voltage-dependent Ca2+ channels (VDCCs) during the firing of back-propagating action potentials. Simultaneous whole-cell recording and microfluorometric Ca2+ imaging were performed in CA1 pyramidal neurons from hippocampal organotypic slice cultures treated with BDNF for 2-4 days in vitro. Our observations indicate that long-term exposure to BDNF does not affect [Ca2+]i transients in apical dendrites mediated by influx through L-type VDCCs during trains of back-propagating action potentials evoked by direct depolarizing current injections. These results suggest that, despite BDNF's profound effects on hippocampal synaptic plasticity, and of L-type Ca2+ channels on neuronal gene transcription, the role of BDNF in cellular models of hippocampus-dependent learning and memory does not involve modulation of voltage-gated dendritic Ca2+ signaling mediated by L-type channels in apical dendrites of CA1 pyramidal neurons. © 2002 ISDN. Published by Elsevier Science Ltd. All rights reserved.
  • Digital Object Identifier (doi)

    Author List

  • McCutchen ME; Bramham CR; Pozzo-Miller LD
  • Start Page

  • 199
  • End Page

  • 207
  • Volume

  • 20
  • Issue

  • 3-5