Mouse embryonic fibroblasts from CD38 knockout mice are resistant to oxidative stresses through inhibition of reactive oxygen species production and Ca2+ overload

Academic Article


  • CD38 is a multifunctional enzyme that has both ADP-ribosyl cyclase and cADPR hydrolase activities, being capable of cleaving NAD+ to cyclic ADP ribose (cADPR) and hydrolyzing cADPR to ADPR. It has been reported that there is markedly a reduction of cADPR and elevation of NAD in many tissues from CD38 knockout (CD38-/-) mice. Cyclic ADPR is a potent second messenger for intracellular Ca2+ mobilization, and NAD is a key cellular metabolite for cellular energetic and a crucial regulator for multiple signaling pathways in cells. We hypothesize that CD38 knockout may have a protective effect in oxidative stresses through elevating NAD and decreasing cADPR. In the present study, we observed that the mouse embryonic fibroblasts (MEFs) from CD38-/- mice were significantly resistant to oxidative stress such as H2O2 injury and hypoxia/reoxygenation compared with wild type MEFs (WT MEFs). We further found that production of reactive oxygen species (ROS) and concentrations of intracellular Ca2+ ([Ca2+]i) in CD38-/- MEFs were markedly reduced compared with WT MEFs during hypoxia/reoxygenation. Coincidence with these results, a remarkably lower mRNA level of Nox1, one of the enzymes responsible for ROS generation, was observed in CD38-/- MEFs. Furthermore, we found that transcription of Nox1 mRNA in WT MEFs could be elevated by calcium ionophore ionomycin in a dose-dependent manner, indicating that the expression of Nox1 mRNA can be regulated by elevation of intracellular [Ca2+]. Therefore we concluded that CD38-/- MEFs are resistant to oxidative stresses through inhibiting intracellular Ca2+ overload and ROS production which may be regulated by Ca2+-mediated inhibition of Nox1 expression. Our data should provide an insight for elucidating the roles of CD38 in oxidative stresses and a novel perspective of dealing with the ischemia/reperfusion-related diseases. © 2010 Elsevier Inc.
  • Digital Object Identifier (doi)

    Author List

  • Ge Y; Jiang W; Gan L; Wang L; Sun C; Ni P; Liu Y; Wu S; Gu L; Zheng W
  • Start Page

  • 167
  • End Page

  • 172
  • Volume

  • 399
  • Issue

  • 2