Gene replacement therapy for sickle cell disease and other blood disorders.

Academic Article

Abstract

  • Previous studies have demonstrated that sickle cell disease (SCD) can be corrected in mouse models by transduction of hematopoietic stem cells with lentiviral vectors containing anti-sickling globin genes followed by transplantation of these cells into syngeneic recipients. Although self-inactivating (SIN) lentiviral vectors with or without insulator elements should provide a safe and effective treatment in humans, some concerns about insertional mutagenesis persist. An ideal correction would involve replacement of the sickle globin gene (betaS) with a normal copy of the gene (betaA). We recently derived embryonic stem (ES) cells from a novel knockin mouse model of SCD and tested a protocol for correcting the sickle mutation by homologous recombination. Animals derived after gene replacement produced high levels of normal human hemoglobin (HbA), and the pathology associated with SCD was corrected. These experiments provided a foundation for similar studies in which our group collaborated with Rudolf Jaenisch's laboratory to correct SCD by gene replacement in iPS (induced pluripotent stem) cells derived by direct reprogramming of sickle skin fibroblasts. Corrected iPS cells were differentiated into hematopoeitic progenitors that were transplanted into irradiated sickle recipients. The transplanted animals produced high levels of normal human HbA, and the pathology of SCD was corrected. These proof-of-principle studies provide a foundation for the development of gene replacement therapy for human patients with SCD and other blood disorders.
  • Published In

    Digital Object Identifier (doi)

    Pubmed Id

  • 10857759
  • Author List

  • Townes TM
  • Start Page

  • 193
  • End Page

  • 196