Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models

Academic Article

Abstract

  • Purpose: Poly(ADP-ribose) polymerase-1 (PARP-1) is the founding member of a family of enzymes that catalyze the addition of ADP-ribose units to proteins that mediate DNA repair pathways. Ionizing radiation induces DNA strand breaks, suggesting that PARP-1 inhibition may sensitize tumor cells to radiation. Experimental Design: We investigated the combination of PARP-1 inhibition with radiation in lung cancer models. ABT-888, a novel potent PARP-1 inhibitor, was used to explore the effects of PARP-1 inhibition on irradiated tumors and tumor vasculature. Results: ABT-888 reduced clonogenic survival in H460 lung cancer cells, and inhibited DNA repair as shown by enhanced expression of DNA strand break marker histone γ-H2AX. Both apoptosis and autophagy contributed to the mechanism of increased cell death. Additionally, ABT-888 increased tumor growth delay at well-tolerated doses in murine models. For a 5-fold increase in tumor volume, tumor growth delay was 1 day for ABT-888 alone, 7 days for radiation alone, and 13.5 days for combination treatment. Immunohistochemical staining of tumor sections revealed an increase in terminal deoxyribonucleotide transferase - mediated nick-end labeling apoptotic staining, and a decrease in Ki-67 proliferative staining after combination treatment. Matrigel assay showed a decrease in in vitro endothelial tubule formation with ABT-888/radiation combination treatment, and von Willebrand factor staining of tumor sections revealed decreased vessel formation in vivo, suggesting that this strategy may also target tumor angiogenesis. Conclusions: We conclude that PARP-1 inhibition shows promise as an effective means of enhancing tumor sensitivity to radiation, and future clinical studies are needed to determine the potential of ABT-888 as a radiation enhancer. © 2007 American Association for Cancer Research.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Albert JM; Cao C; Kwang WK; Willey CD; Geng L; Xiao D; Wang H; Sandler A; Johnson DH; Colevas AD
  • Start Page

  • 3033
  • End Page

  • 3042
  • Volume

  • 13
  • Issue

  • 10