A novel type II complement C2 deficiency allele in an African-American family

Academic Article

Abstract

  • A 9-yr-old African-American male presenting with severe recurrent pyogenic infections was found to have C2 deficiency (C2D). Analysis of his genomic DNA demonstrated that he carried one type I C2D allele associated with the HLA-A25, B18, DR15 haplotype. Screening all 18 exons of the C2 gene by exon-specific PCR/single-strand conformation polymorphism indicated abnormal bands in exons 3, 7, and 6, the latter apparently caused by the 28- bp deletion of the typical type I C2D allele. Nucleotide (nt) sequencing of the PCR-amplified exons 3 and 7 revealed a heterozygous G to A transition at nt 392, causing a C111Y mutation, and a heterozygous G to C transversion at nt 954, causing a E298D mutation and a polymorphic MaeII site. Cys111 is the invariable third half-cystine of the second complement control protein module of C2. Pulse-chase biosynthetic labeling experiments indicated that the C111Y mutant C2 was retained by transfected COS cells and secreted only in minimal amounts. Therefore, this mutation causes a type II C2D. In contrast, the E298D mutation affected neither the secretion of C2 from transfected cells nor its specific hemolytic activity. Analysis of genomic DNA from members of the patient's family indicated that 1) the proband as well as one of his sisters inherited the type I C2D allele from their father and the novel type II C2D allele from their mother; 2) the polymorphic MaeII site caused by the G954C transversion is associated with the type I C2D allele; and 3) the novel C111Y mutation is associated in this family with the haplotype HLA-A28, B58, DR12.
  • Authors

    Published In

    Author List

  • Zhu ZB; Atkinson TP; Volanakis JE
  • Start Page

  • 578
  • End Page

  • 584
  • Volume

  • 161
  • Issue

  • 2