Mature but not immature Fas Ligand (CD95L)-transduced human monocyte-derived dendritic cells are protected from Fas-mediated apoptosis and can be used as killer APC

Academic Article

Abstract

  • Several in vitro and animal studies have been performed to modulate the interaction of APCs and T cells by Fas (CD95/Apo-1) signaling to delete activated T cells in an Ag-specific manner. However, due to the difficulties in vector generation and low transduction frequencies, similar studies with primary human APC are still lacking. To evaluate whether Fas ligand (FasL/ CD95L) expressing killer APC could be generated from primary human APC, monocyte-derived dendritic cells (DC) were transduced using the inducible Cre/Loxp adenovirus vector system. Combined transduction of DC by AdLoxpFasL and AxCANCre, but not single transduction with these vectors, resulted in dose- and time-dependent expression of FasL in >70% of mature DC (mDC), whereas <20% of immature DC (iDC) expressed FasL. In addition, transduction by AdLoxpFasL and AxCANCre induced apoptosis in >80% of iDC, whereas FasL-expressing mDC were protected from FasL/Fas (CD95/Apo-1)-mediated apoptosis despite coexpression of Fas. FasL-expressing mDC eliminated Fas+ Jurkat T cells as well as activated primary T cells by apoptosis, whereas nonactivated primary T cells were not deleted. Induction of apoptosis in Fas+ target cells required expression of FasL in DC and cell-to-cell contact between effector and target cell, and was not dependent on soluble FasL. Induction of apoptosis in Fas+ target cells required expression of FasL in DC, cell-to-cell contact between effector and target cell, and was not dependent on soluble FasL. The present results demonstrate that FasL-expressing killer APC can be generated from human monocyte-derived mDC using adenoviral gene transfer. Our results support the strategy to use killer APCs as immunomodulatory cells for the treatment of autoimmune disease and allograft rejection.
  • Published In

    Digital Object Identifier (doi)

    Pubmed Id

  • 22389319
  • Author List

  • Hoves S; Krause SW; Halbritter D; Zhang HG; Mountz JD; Schölmerich J; Fleck M
  • Start Page

  • 5406
  • End Page

  • 5413
  • Volume

  • 170
  • Issue

  • 11