Prevention of carcinogenesis and inhibition of breast cancer tumor burden by dietary stearate

Academic Article

Abstract

  • Previous studies have shown that stearate (C18:0), a dietary long-chain saturated fatty acid, inhibits breast cancer cell neoplastic progression; however, little is known about the mechanism modulating these processes. We demonstrate that stearate, at physiological concentrations, inhibits cell cycle progression in human breast cancer cells at both the G1 and G2 phases. Stearate also increases cell cycle inhibitor p21CIP1/WAF1 and p27KIP1 levels and concomitantly decreases cyclin-dependent kinase 2 (Cdk2) phosphorylation. Our data also show that stearate induces Ras-guanosine triphosphate formation and causes increased phosphorylation of extracellular signal-regulated kinase (pERK). The MEK1 inhibitor, PD98059, reversed stearate-induced p21CIP1/WAF1 upregulation, but only partially restored stearate-induced dephosphorylation of Cdk2. The Ras/mitogen-activated protein kinase/ERK pathway has been linked to cell cycle regulation but generally in a positive way. Interestingly, we found that stearate inhibits both Rho activation and expression in vitro. In addition, constitutively active RhoC reversed stearate-induced upregulation of p27KIP1, providing further evidence of Rho involvement. To test the effect of stearate in vivo, we used the N-Nitroso-N-methylurea rat breast cancer carcinogen model. We found that dietary stearate reduces the incidence of carcinogen-induced mammary cancer and reduces tumor burden. Importantly, mammary tumor cells from rats on a stearate diet had reduced expression of RhoA and B as well as total Rho compared with a low-fat diet. Overall, these data indicate that stearate inhibits breast cancer cell proliferation by inhibiting key check points in the cell cycle as well as Rho expression in vitro and in vivo and inhibits tumor burden and carcinogen-induced mammary cancer in vivo. © The Author 2011. Published by Oxford University Press. All rights reserved.
  • Published In

  • Carcinogenesis  Journal
  • Digital Object Identifier (doi)

    Author List

  • Li C; Zhao X; Toline EC; Siegal GP; Evans LM; Ibrahim-Hashim A; Desmond RA; Hardy RW
  • Start Page

  • 1251
  • End Page

  • 1258
  • Volume

  • 32
  • Issue

  • 8