Thioredoxin-interacting protein regulates insulin transcription through microRNA-204

Academic Article


  • Beta-cell dysfunction and impaired insulin production are hallmarks of diabetes, but despite the growing diabetes epidemic, the molecular mechanisms underlying this disease have remained unclear. We identified thioredoxin-interacting protein (TXNIP), a cellular redox regulator, as a crucial factor in beta-cell biology and show that beta-cell TXNIP is upregulated in diabetes, whereas TXNIP deficiency protects against diabetes by preventing beta-cell apoptosis. Here we show that TXNIP and diabetes induce beta-cell expression of a specific microRNA, miR-204, which in turn blocks insulin production by directly targeting and downregulating MAFA, a known insulin transcription factor. In particular, we first discovered the regulation of miR-204 by TXNIP by microarray analysis, followed by validation studies in INS-1 beta cells, islets of Txnip-deficient mice, diabetic mouse models and primary human islets. We then further found that TXNIP induces miR-204 by inhibiting the activity of signal transducer and activator of transcription 3 (STAT3), a transcription factor that is involved in miR-204 regulation. We also identified MAFA as a target that is downregulated by miR-204. Taken together, our results demonstrate that TXNIP controls microRNA expression and insulin production and that miR-204 is involved in beta-cell function. The newly identified TXNIP-miR-204-MAFA-insulin pathway may contribute to diabetes progression and provides new insight into TXNIP function and microRNA biology in health and disease.
  • Published In

  • Nature Medicine  Journal
  • Digital Object Identifier (doi)

    Author List

  • Xu G; Chen J; Jing G; Shalev A
  • Start Page

  • 1141
  • End Page

  • 1146
  • Volume

  • 19
  • Issue

  • 9