Levels of high density lipoprotein (HDL) and its major protein component, apolipoprotein (apo) A-I, are strongly inversely correlated to risk of atherosclerosis and other vascular diseases. A number of properties of apo A-I may contribute to this protection, including removal of cholesterol from peripheral tissues to the liver (reverse cholesterol transport), anti-inflammatory and anti-oxidative activities, and modulation of vascular function. Apo A-I has lipid-associating domains that form class A amphipathic helices. Peptide analogs that have no sequence homology to the do-mains in apo A-I but possess the class A motif have been shown to not only associate with phospholipid but also mimic several of the functional properties of apo A-I. Peptide 4F, with four phenylalanines on the non-polar face, was found to be maximally effective in mimicking the positive qualities of apo A-I; this peptide inhibited atherosclerosis, reduced inflammation and oxidation, and improved vascular function in a number of animal models, and when synthesized with D-amino acids is orally bioavailable. Several other classes of peptide mimetics are now being studied, and may contribute to our understanding of the functions of apo E and apo J. The use of peptide mimetics to study apolipoprotein function has proved to be a powerful tool, and may lead to novel therapeutic agents in the prevention of atherosclerosis and other vascular diseases. © 2006 Bentham Science Publishers Ltd.