Lyn kinase activity is the predominant cellular Src kinase activity in glioblastoma tumor cells

Academic Article

Abstract

  • Cellular Src activity modulates cell migration, proliferation, and differentiation, and recent reports suggest that individual members of the Src family may play specific roles in these processes. As we have found that Lyn, but not Fyn, activity promotes migration of glioblastoma cells in response to the cooperative signal generated by platelet-derived growth factor receptor β and integrin αvβ3, we compared the activity and expression of Lyn and Fyn in glioblastoma (grade IV) tumor biopsy samples with that in anaplastic astrocytoma (grade III) tumors, nonneoplastic brain, and normal autopsy brain samples. Lyn kinase activity was significantly elevated in glioblastoma tumor samples. Notably, the Lyn kinase activity accounted for >90% of pan-Src kinase activity in glioblastoma samples but only ≈30% of pan-Src kinase activity in the other groups. The levels of phosphorylation of the autophosphorylation site were consistent with significantly higher Lyn activity in glioblastoma tumor tissue than nonneoplastic brain. Although the normalized levels of Lyn protein and the relative levels of Lyn message were significantly higher in glioblastoma samples than nonneoplastic brain, the normalized levels of Lyn protein did not correlate with Lyn activity in the glioblastoma samples. There was no significant difference in the normalized levels of c-Src and Fyn protein and message in the glioblastoma and nonneoplastic brain. Immunostaining revealed that Lyn is located primarily in the glioblastoma cells in the tumor biopsies. These data indicate that Lyn kinase activity is significantly elevated in glioblastoma tumors and suggest that it is the Lyn activity that promotes the malignant phenotype in these tumors. ©2005 American Association for Cancer Research.
  • Published In

  • Cancer Research  Journal
  • Digital Object Identifier (doi)

    Author List

  • Stettner MR; Wang W; Nabors LB; Bharara S; Flynn DC; Grammer JR; Gillespie GY; Gladson CL
  • Start Page

  • 5535
  • End Page

  • 5543
  • Volume

  • 65
  • Issue

  • 13