Self-repairing approaches for resin infused composites subjected to low velocity impact

Academic Article

Abstract

  • Low velocity impact response (LVIR) of glass reinforced polymer composites (GRPCs), which have the potential to self repair both micro- and macro-damage, has been investigated. This class of materials falls under the category of passive smart polymer composites. The self-repairing mechanism is achieved through the incorporation of hollow fibers in addition to the normal solid reinforcing fibers. The hollow fibers store the damage-repairing solution or chemicals that are released into the matrix or damaged zone upon fiber failure. Plain-weave S-2 glass fabric reinforcement, DERAKANE vinyl ester 411-C50 and EPON-862 epoxy resin systems were considered for this study. Different tubing materials were investigated for potential use for storing the repairing chemicals instead of the actual hollow repair-fibers and included borosilicate glass micro-capillary pipets, flint glass Pasteur pipets, copper tubing and aluminum tubing. Composite panels were fabricated by using vacuum assisted resin transfer molding (VARTM) process. The present investigation addressed fabrication of self-repairing composite panels, the processing quality, selection of storage material for the repairing solution and, release and transportation of repairing solution.
  • Authors

    Author List

  • Motuku M; Janowski GM; Vaidya UK
  • Start Page

  • 287
  • End Page

  • 299
  • Volume

  • 26