Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa

Academic Article

Abstract

  • © 2016 Macmillan Publishers Limited. The molecular mechanism of autosomal dominant retinitis pigmentosa (ADRP) in rats is closely associated with a persistently activated unfolded protein response (UPR). If unchecked, the UPR might trigger apoptosis, leading to photoreceptor death. One of the UPR-activated cellular signaling culminating in apoptotic photoreceptor cell death is linked to an increase in intracellular Ca2+. Therefore, we validated whether ADRP retinas experience a cytosolic Ca2+ overload, and whether sustained UPR in the wild-type retina could promote retinal degeneration through Ca2+-mediated calpain activation. We performed an ex vivo experiment to measure intracellular Ca2+ in ADRP retinas as well as to detect the expression levels of proteins that act as Ca2+ sensors. In separate experiments with the subretinal injection of tunicamycin (UPR inducer) and a mixture of calcium ionophore (A231278) and thapsigargin (SERCA2b inhibitor) we assessed the consequences of a sustained UPR activation and increased intracellular Ca2+ in the wild-type retina, respectively, by performing scotopic ERG, histological, and western blot analyses. Results of the study revealed that induced UPR in the retina activates calpain-mediated signaling, and increased intracellular Ca2+ is capable of promoting retinal degeneration. A significant decline in ERG amplitudes at 6 weeks post treatment was associated with photoreceptor cell loss that occurred through calpain-activated CDK5-pJNK-Csp3/7 pathway. Similar calpain activation was found in ADRP rat retinas. A twofold increase in intracellular Ca2+ and up-and downregulations of ER membrane-associated Ca2+-regulated IP3R channels and SERCA2b transporters were detected. Therefore, sustained UPR activation in the ADRP rat retinas could promote retinal degeneration through increased intracellular Ca2+ and calpain-mediated apoptosis.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Shinde V; Kotla P; Strang C; Gorbatyuk M
  • Volume

  • 7