Effects of altered restraints in β1 integrin on the force-regulated interaction between the glycosylated I-like domain of β1 integrin and fibronectin iii 9-10: A steered molecular dynamic study

Academic Article


  • Cytoskeletal restraints affect force-regulated integrin function in cell adhesion. However, the structural and molecular basis underlying the effect of cytoskeletal restraints on β1 integrin binding to fibronectin is still largely unknown. In this study, we used steered molecular dynamics simulations to investigate the changes in glycosylated β1 integrin-fibronectin binding and in conformation and structure of the glycosylated β1 I-like domain-FN-III 9-10 complex caused by altered restraints applied to β1 I-like domain. The results revealed that imposition of the increased constraints on β1 integrin increased resistance to force-induced dissociation of the β1 I-like domain-fibronectin complex. Specifically, the increased constraints enhanced resistance to relative conformational changes in the RGDsynergy site in fibronectin, increased the conformational stability of fibronectin, and prevented losses in hydrogen bond occupancy of each β-strand pair in FNIII10 resulting from external force. The increased constraints also resulted in an increase in correlated motion between residues in the β1 I-like domain, which may directly affect the interaction of β1 integrin with fibronectin. Results from this study provide molecular and structural insights into the effects of altered restraints in β1 integrin on the interaction between glycosylated β1 Integrin and fibronectin and its induced cell adhesion. Copyright © 2011 Tech Science Press.
  • Published In

    Author List

  • Pan D; Song Y
  • Start Page

  • 233
  • End Page

  • 252
  • Volume

  • 8
  • Issue

  • 3