Lovo-cel gene therapy for sickle cell disease: Treatment process evolution and outcomes in the initial groups of the HGB-206 study

Academic Article

Abstract

  • lovo-cel (bb1111; LentiGlobin for sickle cell disease [SCD]) gene therapy (GT) comprises autologous transplantation of hematopoietic stem and progenitor cells transduced with the BB305 lentiviral vector encoding a modified β-globin gene (βA-T87Q) to produce anti-sickling hemoglobin (HbAT87Q). The efficacy and safety of lovo-cel for SCD are being evaluated in the ongoing phase 1/2 HGB-206 study (ClinicalTrials.gov: NCT02140554). The treatment process evolved over time, using learnings from outcomes in the initial patients to optimize lovo-cel's benefit–risk profile. Following modest expression of HbAT87Q in the initial patients (Group A, n = 7), alterations were made to the treatment process for patients subsequently enrolled in Group B (n = 2, patients B1 and B2), including improvements to cell collection and lovo-cel manufacturing. After 6 months, median Group A peripheral blood vector copy number (≥0.08 c/dg) and HbAT87Q levels (≥0.46 g/dL) were inadequate for substantial clinical effect but stable and sustained over 5.5 years; both markedly improved in Group B (patient B1: ≥0.53 c/dg and ≥2.69 g/dL; patient B2: ≥2.14 c/dg and ≥6.40 g/dL, respectively) and generated improved biologic and clinical efficacy in Group B, including higher total hemoglobin and decreased hemolysis. The safety of the lovo-cel for SCD treatment regimen largely reflected the known side effects of HSPC collection, busulfan conditioning regimen, and underlying SCD; acute myeloid leukemia was observed in two patients in Group A and deemed unlikely related to insertional oncogenesis. Changes made during development of the lovo-cel treatment process were associated with improved outcomes and provide lessons for future SCD GT studies.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Author List

  • Kanter J; Thompson AA; Pierciey FJ; Hsieh M; Uchida N; Leboulch P; Schmidt M; Bonner M; Guo R; Miller A
  • Start Page

  • 11
  • End Page

  • 22
  • Volume

  • 98
  • Issue

  • 1