The role of dye affinity in optical measurements of Cai2+ transients in cardiac muscle

Academic Article

Abstract

  • Previous experiments in cultures of neonatal rat myocytes demonstrated that the shape of Cai2+ transients measured using high-affinity Ca2+-sensitive dyes may be misrepresented. The purpose of this study was to examine the role of dye affinity in Cai2+ measurements in intact adult cardiac tissue by comparing optical recordings obtained with high- and low-affinity dyes. Experiments were carried out in porcine left ventricular (LV) wedge preparations stained locally by intramural injection via microcapillaries (diameter = 150 μm) with a low-affinity Ca2+-sensitive dye Fluo-4FF or Fluo-2LA (nominal Kd, ~7-10 μmol/l), high-affinity dye Rhod-2 (Kd = 0.57 μmol/l), and Fluo-4 or Fluo-2MA (Kd, ~0.4 μmol/l); in addition, tissue was stained with transmembrane potential (Vm)-sensitive dye RH-237. Optical recordings ofVm and Cai2+ were made using optical fibers (diameter = 325 μm) glued with the microcapillaries. The durations of Cai2+ transients measured at 50% level of recovery (CaD50) using high-affinity Fluo-4/Fluo-2MA dyes were up to ~81% longer than those measured with low-affinity Fluo-4FF/Fluo-2LA at long pacing cycle lengths (CL). In Fluo-4/Fluo-2MA measurements at long CLs, Cai2+ transients often (~50% of cases) exhibited slow upstroke rise and extended plateau. In Rhod-2 measurements, CaD50 was moderately longer (up to ~35%) than in Fluo-4FF recordings, but Cai2+ transient shapes were similar. In all series of measurements, mean action potential duration values were not significantly different (P > 0.05). The delays between Vm and Cai2+upstrokes were comparable for low- and high-affinity dyes (P > 0.05). In conclusion, measurements of Cai2+ transient in ventricular myocardium are strongly affected by the affinity of Ca2+ dyes. The high-affinity dyes may overestimate the duration and alter the shape of Cai2+ transients. © 2014 the American Physiological Society.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Kong W; Fast VG
  • Volume

  • 307
  • Issue

  • 1