Pressure effect on magnetism and valence in ferromagnetic superconductor Eu(Fe0.75Ru0.25)2As2

Academic Article

Abstract

  • Eu(Fe0.75Ru0.25)2As2 is an intriguing system with unusual coexistence of superconductivity and ferromagnetism, providing a unique platform to study the nature of such coexistence. To establish a magnetic phase diagram, time-domain synchrotron Mössbauer experiments in 151Eu have been performed on a single crystalline Eu(Fe0.75Ru0.25)2As2 sample under hydrostatic pressures and at low temperatures. Upon compression the magnetic ordering temperature increases sharply from 20 K at ambient pressure, reaching ∼49 K at 10.1 GPa. With further compression, the magnetic order is suppressed and eventually collapses. Isomer shift values from Mössbauer measurements and x-ray absorption spectroscopy data at Eu L 3 edge show that pressure drives Eu ions to a homogeneous intermediate valence state with mean valence of ∼2.4 at 27.4 GPa, possibly responsible for the suppression of magnetism. Synchrotron powder x-ray diffraction experiment reveals a tetragonal to collapsed-tetragonal structural transition around 5 GPa, a lower transition pressure than in the parent compound. These results provide guidance to further work investigating the interplay of superconductivity and magnetism.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Nix Z; Zhao J; Alp EE; Xiao Y; Zhang D; Cao GH; Vohra YK; Bi W
  • Volume

  • 34
  • Issue

  • 41