Race Versus Social Determinants of Health in COVID-19 Hospitalization Prediction

Academic Article


  • Introduction: Including race as a biological construct in risk prediction models may guide clinical decisions in ways that cause harm and widen racial disparities. This study reports on using race versus social determinants of health (SDoH) in predicting the associations between cardiometabolic disease severity (assessed using cardiometabolic disease staging) and COVID-19 hospitalization. Methods: Electronic medical record data on patients with a positive COVID-19 polymerase chain reaction test in 2020 and a previous encounter in the electronic medical record where cardiometabolic disease staging clinical data (BMI, blood glucose, blood pressure, high-density lipoprotein cholesterol, and triglycerides) were available from 2017 to 2020, were analyzed in 2021. Associations between cardiometabolic disease staging and COVID-19 hospitalization adding race and SDoH (individual and neighborhood level [e.g., Social Vulnerability Index]) in different models were examined. Area under the curve was used to assess predictive performance. Results: A total of 2,745 patients were included (mean age of 58 years, 59% female, 47% Black). In the cardiometabolic disease staging model, area under the curve was 0.767 vs 0.777 when race was included. Adding SDoH to the cardiometabolic model improved the area under the curve to 0.809 (p<0.001), whereas the addition of SDoH and race increased the area under the curve to 0.811. In race-stratified models, the area under the curve for non-Hispanic Blacks was 0.781, whereas the model for non-Hispanic Whites performed better with an area under the curve of 0.821. Conclusions: Cardiometabolic disease staging was predictive of hospitalization after a positive COVID-19 test. Adding race did not markedly increase the predictive ability; however, adding SDoH to the model improved the area under the curve to ≥0.80. Future research should include SDoH with biological variables in prediction modeling to capture social experience of race.
  • Digital Object Identifier (doi)

    Author List

  • Howell CR; Zhang L; Yi N; Mehta T; Garvey WT; Cherrington AL
  • Start Page

  • S103
  • End Page

  • S108
  • Volume

  • 63
  • Issue

  • 1