Epigenome-wide DNA methylation profiling of conditioned pain modulation in individuals with non-specific chronic low back pain

Academic Article


  • Background: The pathoanatomic cause of chronic low back pain (cLBP) cannot be identified for up to 90% of individuals. However, dysfunctional processing of endogenous nociceptive input, measured as conditioned pain modulation (CPM), has been associated with cLBP and may involve changes in neuronal gene expression. Epigenetic-induced changes such as DNA methylation (DNAm) have been associated with cLBP. Methods: In the present study, the relationship between CPM and DNAm changes in a sample of community-dwelling adults with nonspecific cLBP (n = 48) and pain-free controls (PFC; n = 50) was examined using reduced representation bisulfite sequencing. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied to identify key pathways involved in efficient versus deficient CPM. Results: Based on CPM efficiency, we identified 6006 and 18,305 differentially methylated CpG sites (DMCs) with q values < 0.01 among individuals with cLBP and PFCs, respectively. Most of the DMCs were hypomethylated and annotated to genes of relevance to pain, including OPRM1, ADRB2, CACNA2D3, GNA12, LPL, NAXD, and ASPHD1. In both cLBP and PFC groups, the DMCs annotated genes enriched many GO terms relevant to pain processing, including transcription regulation by RNA polymerase II, nervous system development, generation of neurons, neuron differentiation, and neurogenesis. Both groups also enriched the pathways involved in Rap1-signaling, cancer, and dopaminergic neurogenesis. However, MAPK-Ras signaling pathways were enriched in the cLBP, not the PFC group. Conclusions: This is the first study to investigate the genome-scale DNA methylation profiles of CPM phenotype in adults with cLBP and PFCs. Based on CPM efficiency, fewer DMC enrichment pathways were unique to the cLBP than the PFCs group. Our results suggest that epigenetically induced modification of neuronal development/differentiation pathways may affect CPM efficiency, suggesting novel potential therapeutic targets for central sensitization. However, CPM efficiency and the experience of nonspecific cLBP may be independent. Further mechanistic studies are required to confirm the relationship between CPM, central sensitization, and nonspecific cLBP.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Goodin BR; Overstreet DS; Penn TM; Bakshi R; Quinn TL; Sims A; Ptacek T; Jackson P; Long DL; Aroke EN
  • Volume

  • 14
  • Issue

  • 1