Penicillin sulfone inhibitors of class D β-lactamases

Academic Article


  • OXA β-lactamases are largely responsible for β-lactam resistance in Acinetobacter spp. and Pseudomonas aeruginosa, two of the most difficult-to-treat nosocomial pathogens. In general, the β-lactamase inhibitors used in clinical practice (clavulanic acid, sulbactam, and tazobactam) demonstrate poor activity against class D β-lactamases. To overcome this challenge, we explored the abilities of β-lactamase inhibitors of the C-2- and C-3-substituted penicillin and cephalosporin sulfone families against OXA-1, extended-spectrum (OXA-10, OXA-14, and OXA-17), and carbapenemase-type (OXA-24/40) class D β-lactamases. Three C-2-substituted penicillin sulfone compounds (JDB/LN-1-255, JDB/LN-III-26, and JDB/ASR-II-292) showed low Ki values for the OXA-1 β-lactamase (0.70 ± 0.14 → 1.60 ± 0.30 μM) and demonstrated significant Ki improvements compared to the C-3-substituted cephalosporin sulfone (JDB/DVR-II-214), tazobactam, and clavulanic acid. The C-2-substituted penicillin sulfones JDB/ASR-II-292 and JDB/LN-1-255 also demonstrated low K is for the OXA-10, -14, -17, and -24/40 β-lactamases (0.20 ± 0.04 → 17 ± 4 μM). Furthermore, JDB/LN-1-255 displayed stoichiometric inactivation of OXA-1 (the turnover number, i.e., the partitioning of the initial enzyme inhibitor complex between hydrolysis and enzyme inactivation [tn] = 0) and tns ranging from 5 to 8 for the other OXA enzymes. Using mass spectroscopy to study the intermediates in the inactivation pathway, we determined that JDB/LN-1-255 inhibited OXA β-lactamases by forming covalent adducts that do not fragment. On the basis of the substrate and inhibitor kinetics of OXA-1, we constructed a model showing that the C-3 carboxylate of JDB/LN-1-255 interacts with Ser115 and Thr213, the R-2 group at C-2 fits between the space created by the long B9 and B10 β strands, and stabilizing hydrophobic interactions are formed between the pyridyl ring of JDB/LN-1-255 and Val116 and Leu161. By exploiting conserved structural and mechanistic features, JDB/LN-1-255 is a promising lead compound in the quest for effective inhibitors of OXA-type β-lactamases. Copyright © 2010, American Society for Microbiology. All Rights Reserved.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Author List

  • Drawz SM; Bethel CR; Doppalapudi VR; Sheri A; Pagadala SRR; Hujer AM; Skalweit MJ; Anderson VE; Chen SG; Buynak JD
  • Start Page

  • 1414
  • End Page

  • 1424
  • Volume

  • 54
  • Issue

  • 4