The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl

Academic Article

Abstract

  • The bcr/abl fusion in chronic myelogenous leukemia (CML) creates a chimeric tyrosine kinase with dramatically different properties than intact c-abl. In P210 bcr/abl, the bcr portion includes a coiled-coil oligomerization domain (amino acids 1-63) and a grb2-binding site at tyrosine 177 (Tyr177) that are critical for fibroblast transformation, but give variable results in other cell lines. To investigate the role of the coiled-coil domain and Tyr177 in promoting CML, 4 P210 bcr/abl-derived mutants containing different bcr domains fused to abl were constructed. All 4 mutants, Δ(1-63) bcr/abl, (1-63) bcr/abl, Tyr177Phe bcr/abl, and (1-210) bcr/abl exhibited elevated tyrosine kinase activity and conferred factor-independent growth in cell lines. In contrast, differences in the transforming potential of the 4 mutants occurred in our mouse model, in which all mice receiving P210 bcr/abl-expressing bone marrow cells exclusively develop a myeloproliferative disease (MPD) resembling human CML. Of the 4 mutants assayed, only 1-210 bcr/abl, containing both the coiled-coil domain and Tyr177, induced MPD. Unlike full-length P210, this mutant also caused a simultaneous B-cell acute lymphocytic leukemia (ALL). The other 3 mutants, (1-63) bcr/abl, Tyr177Phe bcr/abl, and Δ(1-63) bcr/abl, failed to induce an MPD but instead caused T-cell ALL. These results show that both the bcr coiled-coil domain and Tyr177 are required for MPD induction by bcr/abl and provide the basis for investigating downstream signaling pathways that lead to CML. © 2002 by The American Society of Hematology.
  • Authors

    Published In

  • Blood  Journal
  • Digital Object Identifier (doi)

    Author List

  • He Y; Wertheim JA; Xu L; Miller JP; Karnell FG; Choi JK; Ren R; Pear WS
  • Start Page

  • 2957
  • End Page

  • 2968
  • Volume

  • 99
  • Issue

  • 8