Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model

Academic Article


  • Objectives Antibacterial primer and adhesive are promising to inhibit biofilms and caries. Since restorations in vivo are exposed to saliva, one concern is the attenuation of antibacterial activity due to salivary pellicles. The objective of this study was to investigate the effects of salivary pellicles on bonding agents containing a new monomer dimethylaminododecyl methacrylate (DMADDM) or nanoparticles of silver (NAg) against biofilms for the first time. Methods DMADDM and NAg were synthesized and incorporated into Scotchbond Multi-Purpose adhesive and primer. Specimens were either coated or not coated with salivary pellicles. A microcosm biofilm model was used with mixed saliva from ten donors. Two types of culture medium were used: an artificial saliva medium (McBain), and Brain Heart Infusion (BHI) medium without salivary proteins. Metabolic activity, colony-forming units (CFU), and lactic acid production of plaque microcosm biofilms were measured (n = 6). Results Bonding agents containing DMADDM and NAg greatly inhibited biofilm activities, even with salivary pellicles. When using BHI, the pre-coating of salivary pellicles on resin surfaces significantly decreased the antibacterial effect (p < 0.05). When using artificial saliva medium, pre-coating of salivary pellicles on resin did not decrease the antibacterial effect. These results suggest that artificial saliva yielded medium-derived pellicles on resin surfaces, which provided attenuating effects on biofilms similar to salivary pellicles. Compared with the commercial control, the DMADDM-containing bonding agent reduced biofilm CFU by about two orders of magnitude. Significance Novel DMADDM- and NAg-containing bonding agents substantially reduced biofilm growth even with salivary pellicle coating on surfaces, indicating a promising usage in saliva-rich environment. DMADDM and NAg may be useful in a wide range of primers, adhesives and other restoratives to achieve antibacterial and anti-caries capabilities. © 2013 Academy of Dental Materials.
  • Authors

    Published In

  • Dental Materials  Journal
  • Digital Object Identifier (doi)

    Author List

  • Li F; Weir MD; Fouad AF; Xu HHK
  • Start Page

  • 182
  • End Page

  • 191
  • Volume

  • 30
  • Issue

  • 2