CHIR99021 and fibroblast growth factor 1 enhance the regenerative potency of human cardiac muscle patch after myocardial infarction in mice

Academic Article

Abstract

  • Background: We have shown that genetic overexpression of cell cycle proteins can increase the proliferation of transplanted cardiomyocytes derived from human induced-pluripotent stem cells (hiPSC-CMs) in animal models of myocardial infarction (MI). Here, we introduce a new, non-genetic approach to promote hiPSC-CM cell cycle activity and proliferation in transplanted human cardiomyocyte patches (hCMPs). Methods: Mice were randomly distributed into 5 experimental groups (n = 10 per group). One group underwent Sham surgery, and the other 4 groups underwent MI induction surgery followed by treatment with hCMPs composed of hiPSC-CMs and nanoparticles that contained CHIR99021 and FGF1 (the NP -hCMP group), with hCMPs composed of hiPSC-CMs and empty nanoparticles (the NP -hCMP group); with patches containing the CHIR99021/FGF-loaded nanoparticles but lacking hiPSC-CMs (the NP -Patch group), or patches lacking both the nanoparticles and cells (the E-Patch group). Cell cycle activity was evaluated via Ki67 and Aurora B expression, bromodeoxyuridine incorporation, and phosphorylated histone 3 levels (immunofluorescence); engraftment via human cardiac troponin T or human nuclear antigen expression (immunofluorescence) and bioluminescence imaging; cardiac function via echocardiography; infarct size and wall thickness via histology; angiogenesis via isolectin B4 expression (immunofluorescence); and apoptosis via TUNEL and caspace 3 expression (immunofluorescence). Results: Combined CHIR99021- and FGF1-treatment significantly increased hiPSC-CM cell cycle activity both in cultured cells (by 4- to 6-fold) and in transplanted hCMPs, and compared to treatment with NP -hCMPs, NP -hCMP transplantation increased hiPSC-CM engraftment by ~4-fold and was associated with significantly better measurements of cardiac function, infarct size, wall thickness, angiogenesis, and hiPSC-CM apoptosis four weeks after MI induction. Conclusions: Nanoparticle-mediated CHIR99021 and FGF1 delivery promotes hiPSC-CM cell cycle activity and proliferation, as well as the engraftment and regenerative potency of transplanted hCMPs, in a mouse MI model. CF E CF E CF
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Fan C; Tang Y; Zhao M; Lou X; Pretorius D; Menasche P; Zhu W; Zhang J
  • Start Page

  • 1
  • End Page

  • 10
  • Volume

  • 141