Complex interactions between DksA and stress-responsive alternative sigma factors control inorganic polyphosphate accumulation inEscherichia coli

Academic Article

Abstract

  • ABSTRACTBacteria synthesize inorganic polyphosphate (polyP) in response to a variety of different stress conditions. PolyP protects bacteria by acting as a protein-stabilizing chaperone, metal chelator, or regulator of protein function, among other mechanisms. However, little is known about how stress signals are transmitted in the cell to lead to increased polyP accumulation. Previous work in the model enterobacteriumEscherichia colihas indicated that the RNA polymerase-binding regulatory protein DksA is required for polyP synthesis in response to nutrient limitation stress. In this work, I set out to characterize the role of DksA in polyP regulation in more detail. I found that overexpression of DksA increases cellular polyP content (explaining the long-mysterious phenotype ofdksAoverexpression rescuing growth of adnaKmutant at high temperature) and characterized the roles of known functional residues of DksA in this process, finding that binding to RNA polymerase is required, but none of the other functions of DksA appear to be necessary. Transcriptomics revealed genome-wide transcriptional changes upon nutrient limitation, many of which were affected by DksA, and follow-up experiments identified complex interactions between DksA and the stress-sensing alternative sigma factors FliA, RpoN, and RpoE that impact polyP production, indicating that regulation of polyP synthesis is deeply entwined in the multifactorial stress response network ofE. coli.IMPORTANCEInorganic polyphosphate (polyP) is an evolutionarily ancient, widely conserved biopolymer required for stress resistance and pathogenesis in diverse bacteria, but we do not understand how its synthesis is regulated. In this work, I gained new insights into this process by characterizing the role of the transcriptional regulator DksA in polyP regulation inEscherichia coliand identifying previously unknown links between polyP synthesis and the stress-responsive alternative sigma factors FliA, RpoN, and RpoE.
  • Authors

    Digital Object Identifier (doi)

    Pubmed Id

  • 24654858
  • Author List

  • Gray MJ