Critical evaluation of animal models of visceral pain for therapeutics development: A focus on irritable bowel syndrome

Academic Article


  • © 2019 John Wiley & Sons Ltd The classification of chronic visceral pain is complex, resulting from persistent inflammation, vascular (ischemic) mechanisms, cancer, obstruction or distension, traction or compression, and combined mechanisms, as well as unexplained functional mechanisms. Despite the prevalence, treatment options for chronic visceral pain are limited. Given this unmet clinical need, the development of novel analgesic agents, with defined targets derived from preclinical studies, is urgently needed. While various animal models have played an important role in our understanding of visceral pain, our knowledge is far from complete. Due to the complexity of visceral pain, this document will focus on chronic abdominal pain, which is the major complaint in patients with disorders of the gut-brain interaction, also referred to as functional gastrointestinal disorders, such as irritable bowel syndrome (IBS). Models for IBS are faced with challenges including a complex clinical phenotype, which is comorbid with other conditions including anxiety, depression, painful bladder syndrome, and chronic pelvic pain. Based upon the multifactorial nature of IBS with complicated interactions between biological, psychological, and sociological variables, no single experimental model recapitulates all the symptoms of IBS. This position paper will contextualize chronic visceral pain using the example of IBS and focus on its pathophysiology while providing a critical review of current animal models that are most relevant, robust, and reliable in which to screen promising therapeutics to alleviate visceral pain and delineate the gaps and challenges with these models. We will also highlight, prioritize, and come to a consensus on the models with the highest face/construct validity.
  • Published In

    Digital Object Identifier (doi)

    Pubmed Id

  • 27053568
  • Author List

  • Johnson AC; Farmer AD; Ness TJ; Greenwood-Van Meerveld B