G Protein-Coupled Estrogen Receptor Is Not Required for Sex Determination or Ovary Function in Zebrafish

Academic Article


  • Estrogens regulate vertebrate development and function through binding to nuclear estrogen receptors α and β (ERα and ERβ) and the G protein-coupled estrogen receptor (GPER). Studies in mutant animal models demonstrated that ERα and ERβ are required for normal ovary development and function. However, the degree to which GPER signaling contributes to ovary development and function is less well understood. Previous studies using cultured fish oocytes found that estradiol inhibits oocyte maturation in a GPER-dependent manner, but whether GPER regulates oocyte maturation in vivo is not known. To test the hypothesis that GPER regulates oocyte maturation in vivo, we assayed ovary development and function in gper mutant zebrafish. We found that homozygous mutant gper embryos developed into male and female adults with normal sex ratios. Adult mutant fish exhibited normal secondary sex characteristics and fertility. Additionally, mutant ovaries were histologically normal. We observed no differences in the number of immature versus mature oocytes in mutant versus wild-type ovaries from both young and aged adults. Furthermore, expression of genes associated with sex determination and ovary function was normal in gper mutant ovaries compared with wild type. Our findings suggest that GPER is not required for sex determination, ovary development, or fertility in zebrafish.
  • Published In

  • Endocrinology  Journal
  • Digital Object Identifier (doi)

    Author List

  • Crowder CM; Romano SN; Gorelick DA
  • Start Page

  • 3515
  • End Page

  • 3523
  • Volume

  • 159
  • Issue

  • 10