Scaffoldless tissue-engineered cartilage for studying transforming growth factor beta-mediated cartilage formation

Academic Article


  • Reduced transforming growth factor beta (TGF-β) signaling is associated with osteoarthritis (OA). TGF-β is thought to act as a chondroprotective agent and provide anabolic cues to cartilage, thus acting as an OA suppressor in young, healthy cartilage. A potential approach for treating OA is to identify the factors that act downstream of TGF-β's anabolic pathway and target those factors to promote cartilage regeneration or repair. The aims of the present study were to (a) develop a scaffoldless tissue-engineered cartilage model with reduced TGF-β signaling and disrupted cartilage formation and (b) validate the system for identifying the downstream effectors of TGF-β that promote cartilage formation. Sox9 was used to validate the model because Sox9 is known to promote cartilage formation and TGF-β regulates Sox9 activity. Primary bovine articular chondrocytes were grown in Transwell supports to form cartilage tissues. An Alk5/TGF-β type I receptor inhibitor, SB431542, was used to attenuate TGF-β signaling, and an adenovirus encoding FLAG-Sox9 was used to drive the expression of Sox9 in the in vitro-generated cartilage. SB431542-treated tissues exhibited reduced cartilage formation including reduced thicknesses and reduced proteoglycan staining compared with control tissue. Expression of FLAG-Sox9 in SB431542-treated cartilage allowed the formation of cartilage despite antagonism of the TGF-β receptor. In summary, we developed a three-dimensional in vitro cartilage model with attenuated TGF-β signaling. Sox9 was used to validate the model for identification of anabolic agents that counteract loss of TGF-β signaling. This model has the potential to identify additional anabolic factors that could be used to repair or regenerate damaged cartilage.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Chavez RD; Serra R
  • Volume

  • 36
  • Issue

  • 1