Recognition and binding of human telomeric G-quadruplex DNA by unfolding protein 1

Academic Article


  • The specific recognition by proteins of G-quadruplex structures provides evidence of a functional role for in vivo G-quadruplex structures. As previously reported, the ribonucleoprotein, hnRNP Al, and it is proteolytic derivative, unwinding protein 1 (UP1), bind to and destabilize G-quadruplex structures formed by the human telomeric repeat d(TTAGGG)n. UP1 has been proposed to be involved in the recruitment of telomerase to telomeres for chain extension. In this study, a detailed thermodynamic characterization of the binding of UP1 to a human telomeric repeat sequence, the d[AGGG(TTAGGG) 3] G-quadruplex, is presented and reveals key insights into the UP1-induced unfolding of the G-quadruplex structure. The UP1-G-quadruplex interactions are shown to be enthalpically driven, exhibiting large negative enthalpy changes for the formation of both the Na+ and K+ G-quadruplex-UP1 complexes (ΔH values of -43 and -19 kcal/mol, respectively). These data reveal three distinct enthalpic contributions from the interactions of UP1 with the Na+ form of G-quadruplex DNA. The initial interaction is characterized by a binding affinity of 8.5 × 108 M-1 (strand), 200 times stronger than the binding of UP1 to a single-stranded DNA with a comparable but non-quadruplex-forming sequence [4.1 × 106 M-1 (strand)]. Circular dichroism spectroscopy reveals the Na+ form of the G-quadruplex to be completely unfolded by UP1 at a binding ratio of 2:1 (UP1:G-quadruplex DNA). The data presented here demonstrate that the favorable energetics of the initial binding event are closely coupled with and drive the unfolding of the G-quadruplex structure. © 2014 American Chemical Society.
  • Published In

  • Biochemistry  Journal
  • Digital Object Identifier (doi)

    Pubmed Id

  • 14676435
  • Author List

  • Hudson JS; Ding L; Le V; Lewis E; Graves D
  • Start Page

  • 3347
  • End Page

  • 3356
  • Volume

  • 53
  • Issue

  • 20