Does human leukocyte antigens sensitization matter for xenotransplantation?

Academic Article

Abstract

  • © 2018 The Authors. Xenotransplantation Published by John Wiley & Sons Ltd The major histocompatibility complex class I and class II human leukocyte antigens (HLA) play a central role in adaptive immunity but are also the dominant polymorphic proteins targeted in allograft rejection. Sensitized patients with high levels of panel-reactive anti-HLA antibody (PRA) are at risk of early allograft injury, rejection, reduced allograft survival and often experience prolonged waiting times prior to transplantation. Xenotransplantation, using genetically modified porcine organs, offers a unique source of donor organs for these highly sensitized patients if the anti-HLA antibody, which places the allograft at risk, does not also enhance anti-pig antibody reactivity responsible for xenograft rejection. Recent improvements in xenotransplantation efficacy have occurred due to improved immune suppression, identification of additional xenogeneic glycans, and continued improvements in donor pig genetic modification. Genetically engineered pig cells, devoid of the known xenogeneic glycans, minimize human antibody reactivity in 90% of human serum samples. For waitlisted patients, early comparisons of patient PRA and anti-pig antibody reactivity found no correlation suggesting that patients with high PRA levels were not at increased risk of xenograft rejection. Subsequent studies have found that some, but not all, highly sensitized patients express anti-HLA class I antibody which cross-reacts with swine leukocyte antigen (SLA) class I proteins. Recent detailed antigen-specific analysis suggests that porcine-specific anti-SLA antibody from sensitized patients binds cross-reactive groups present in a limited subset of HLA antigens. This suggests that using modern genetic methods, a program to eliminate specific SLA alleles through donor genetic engineering or stringent donor selection is possible to minimize recipient antibody reactivity even for highly sensitized individuals.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Byrne GW
  • Volume

  • 25
  • Issue

  • 3