α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity

Academic Article

Abstract

  • Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy, collectively referred to as synucleinopathies, are associated with a diverse group of genetic and environmental susceptibilities. The best studied of these is PD. α-Synuclein (α-syn) has a key role in the pathogenesis of both familial and sporadic PD, but evidence linking it to other predisposition factors is limited. Here we report a strong genetic interaction between α-syn and the yeast ortholog of the PD-linked gene ATP13A2 (also known as PARK9). Dopaminergic neuron loss caused by α-syn overexpression in animal and neuronal PD models is rescued by coexpression of PARK9. Further, knockdown of the ATP13A2 ortholog in Caenorhabditis elegans enhances α-syn misfolding. These data provide a direct functional connection between α-syn and another PD susceptibility locus. Manganese exposure is an environmental risk factor linked to PD and PD-like syndromes. We discovered that yeast PARK9 helps to protect cells from manganese toxicity, revealing a connection between PD genetics (α-syn and PARK9) and an environmental risk factor (PARK9 and manganese). Finally, we show that additional genes from our yeast screen, with diverse functions, are potent modifiers of α-syn-induced neuron loss in animals, establishing a diverse, highly conserved interaction network for α-syn. © 2009 Nature America, Inc. All rights reserved.
  • Authors

    Published In

  • Nature Genetics  Journal
  • Digital Object Identifier (doi)

    Author List

  • Gitler AD; Chesi A; Geddie ML; Strathearn KE; Hamamichi S; Hill KJ; Caldwell KA; Caldwell GA; Cooper AA; Rochet JC
  • Start Page

  • 308
  • End Page

  • 315
  • Volume

  • 41
  • Issue

  • 3