Delays in rod-mediated dark adaptation in early age-related maculopathy

Academic Article

Abstract

  • Objective: To determine whether there are disturbances in the rod-mediated kinetics of dark adaptation in early age-related maculopathy (ARM). Design: Comparative, observational case series. Participants: Twenty older adults with early ARM as defined by one or more large (>63 μm) drusen, focal hyperpigmentation, or both, but no choroidal neovascularization or geographic atrophy, and 16 adults in the same age range with none of these fundus features. All participants had 20/25 visual acuity or better in the tested eye. Methods: Dark adaptation functions were measured using a modified Humphrey Field Analyzer (Zeiss Humphrey Systems, Dublin, CA) to assess the rate of rod-mediated sensitivity recovery at 12° on the vertical meridian in the inferior visual field after exposure to the equivalent of a 98% bleach. Baseline (prebleach) scotopic sensitivity, visual acuity, contrast sensitivity, and photopic sensitivity were also measured. Main Outcome Measures: Rod-cone break; second and third components of rod-mediated dark adaptation; time to baseline sensitivity; and baseline (prebleach) scotopic sensitivity. Results: Although their visual acuity was at least 20/25, patients with early ARM on average exhibited deficits in almost all rod-mediated parameters of dark adaptation as compared with age-similar healthy participants. For example, the rod-cone break was delayed approximately 10 minutes in early ARM patients as compared with healthy participants. Age-related maculopathy patients were more likely to fall outside the normal reference range for variables representing dark adaptation kinetics than for steady-state visual functions such as scotopic sensitivity. For example, 85% of ARM patients fell outside the normal reference range in at least one dark adaptation kinetic parameter, whereas only 25% of ARM patients fell outside the normal reference range for steady-state scotopic sensitivity. Conclusions: Rod-mediated kinetic parameters of dark adaptation, which reflect the sensitivity recovery of the visual cycle, are disrupted early in ARM pathogenesis. © 2001 by the American Academy of Ophthalmology.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Owsley C; Jackson GR; White M; Feist R; Edwards D
  • Start Page

  • 1196
  • End Page

  • 1202
  • Volume

  • 108
  • Issue

  • 7