Bromofatty aldehyde derived from bromine exposure and myeloperoxidase and eosinophil peroxidase modify GSH and protein

Academic Article

Abstract

  • Copyright © 2018 Duerr et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc. α-Chlorofatty aldehydes (α-ClFALDs) and α-bromofatty aldehydes (α-BrFALDs) are produced in activated neutrophils and eosinophils. This study investigated the ability of α-BrFALD and α-ClFALD to react with the thiols of GSH and protein cysteinyl residues. Initial studies showed that 2-bromohexadecanal (2-BrHDA) and 2-chlorohexadecanal (2-ClHDA) react with GSH producing the same fatty aldehyde-GSH adduct (FALD-GSH). In both synthetic and cellular reactions, FALD-GSH production was more robust with 2-BrHDA compared with 2-ClHDA as precursor. NaBr-supplemented phorbol myristate acetate (PMA)-activated neutrophils formed more -BrFALD and FALD-GSH compared with non-NaBr-supplemented neutrophils. Primary human eosinophils, which preferentially produce hypobromous acid and α-BrFALD, accumulated FALD-GSH following PMA stimulation. Mice exposed to Br 2 gas had increased levels of both α-BrFALD and FALD-GSH in the lungs, as well as elevated systemic plasma levels of FALD-GSH in comparison to mice exposed to air. Similar relative reactivity of α-ClFALD and α-BrFALD with protein thiols was shown using click analogs of these aldehydes. Collectively, these data demonstrate that GSH and protein adduct formation are much greater as a result of nucleophilic attack of cysteinyl residues on α-BrFALD compared with α-ClFALD, which was observed in both primary leukocytes and in mice exposed to bromine gas.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Duerr MA; Palladino END; Hartman CL; Lambert JA; Franke JD; Albert CJ; Matalon S; Patel RP; Slungaard A; Ford DA
  • Start Page

  • 696
  • End Page

  • 705
  • Volume

  • 59
  • Issue

  • 4