Microtubule motors regulate ISOC activation necessary to increase endothelial cell permeability

Academic Article

Abstract

  • Calcium store depletion activates multiple ion channels, including calcium-selective and nonselective channels. Endothelial cells express TRPC1 and TRPC4 proteins that contribute to a calcium-selective store-operated current, ISOC. Whereas thapsigargin activates the ISOC in pulmonary artery endothelial cells (PAECs), it does not activate ISOC in pulmonary microvascular endothelial cells (PMVECs), despite inducing a significant rise in global cytosolic calcium. Endoplasmic reticulum exhibits retrograde distribution in PMVECs when compared with PAECs. We therefore sought to determine whether endoplasmic reticulum-to-plasma membrane coupling represents an important determinant of ISOC activation in PAECs and PMVECs. Endoplasmic reticulum organization is controlled by microtubules, because nocodozole induced microtubule disassembly and caused retrograde endoplasmic reticulum collapse in PMVECs. In PMVECs, rolipram treatment produced anterograde endoplasmic reticulum distribution and revealed a thapsigargin-activated ISOC that was abolished by nocodozole and taxol. Microtubule motors control organelle distribution along microtubule tracks, with the dynein motor causing retrograde movement and the kinesin motor causing anterograde movement. Dynamitin expression reduces dynein motor function inducing anterograde endoplasmic reticulum transport, which allows for direct activation of ISOC by thapsigargin in PMVECs. In contrast, expression of dominant negative kinesin light chain reduces kinesin motor function and induces retrograde endoplasmic reticulum transport; dominant negative kinesin light chain expression prevented the direct activation of ISOC by thapsigargin in PAECs. ISOC activation is an important step leading to disruption of cell-cell adhesion and increased macromolecular permeability. Thus, microtubule motor function plays an essential role in activating cytosolic calcium transitions through the membrane ISOC channel leading to endothelial barrier disruption. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Pubmed Id

  • 8980609
  • Author List

  • Wu S; Chen H; Alexeyev MF; King JAC; Moore TM; Stevens T; Balczon RD
  • Start Page

  • 34801
  • End Page

  • 34808
  • Volume

  • 282
  • Issue

  • 48