The relationship of electrophysiologic subthalamic nucleus length as a predictor of outcomes in deep brain stimulation for Parkinson disease

Academic Article

Abstract

  • © 2017 S. Karger AG, Basel. Background: Intraoperative measurement of subthalamic nucleus (STN) width through microelectrode recording (MER) is a common proxy for optimal electrode location during deep brain stimulation (DBS) surgery for Parkinson disease. We assessed whether the MER-determined STN width is a predictor of postoperative Unified Parkinson Disease Rating Scale (UPDRS) improvement. Methods: Records were reviewed for patients who underwent single-sided STN DBS placement for Parkinson disease between 2005 and 2010 at the UAB Medical Center. Reviews of preoperative and 3-month postoperative UPDRS part III, intraoperative MER records, and postoperative MRI scans were conducted. Results: The final cohort consisted of 73 patients (mean age 59 ± 9.7 years, length of disease 13 ± 9.7 years). STN widths were defined as depths associated with increased background activity and motor-driven, spiking action potentials on MER. The mean contralateral UPDRS improvement was 58% (± 24). The mean STN width was 5.1 mm (± 1.6, min = 0.0, max = 8.7). No significant relationship between STN width and UPDRS improvement was found, with and without AC-PC normalization (R2 < 0.05). Conclusion: This analysis raises questions about seeking the maximal electrophysiological width of STN as a proxy for optimal outcome in DBS for PD. We suggest this strategy for DBS placement in Parkinson disease be subject to more robust prospective investigation.
  • Digital Object Identifier (doi)

    Author List

  • Shenai MB; Patel DM; Romeo A; Whisenhunt JD; Walker HC; Guthrie S; Guthrie BL
  • Start Page

  • 341
  • End Page

  • 347
  • Volume

  • 95
  • Issue

  • 5