Three-dimensional finite element iviethod for large elastic deformations of ventricular myocardium: I—cylindrical and spherical polar coordinates

Academic Article


  • A three-dimensional Galerkin finite element method was developed for large deformations of ventricular myocardium and other incompressible, nonlinear elastic, anisotropic materials. Cylindrical and spherical elements were used to solve axisymmetric problems with r.m.s. errors typically less than 2 percent. Isochoric interpolation and pressure boundary constraint equations enhanced low-order curvilinear elements under special circumstances (69 percent savings in degrees of freedom, 78 percent savings in solution time for inflation of a thick-walled cylinder). Generalized tensor products of linear Lagrange and cubic Hermite polynomials permitted custom elements with improved performance, including 52 percent savings in degrees of freedom and 66 percent savings in solution time for compression of a circular disk. Such computational efficiencies become significant for large scale problems such as modeling the heart. © 1996 by ASME.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Author List

  • Costa KD; Hunter PJ; Rogers JM; Guccione JM; Waldman LK; McCulloch AD
  • Start Page

  • 452
  • End Page

  • 463
  • Volume

  • 118
  • Issue

  • 4