Hemodynamic and Anatomic Predictors of Renovisceral Stent-Graft Occlusion Following Chimney Endovascular Repair of Juxtarenal Aortic Aneurysms

Academic Article


  • Purpose: To identify anatomic and hemodynamic changes associated with impending visceral chimney stent-graft occlusion after endovascular aneurysm repair (EVAR) with the chimney technique (chEVAR). Methods: A retrospective evaluation was performed of computed tomography scans from 41 patients who underwent juxtarenal chEVAR from 2008 to 2012 to identify stent-grafts demonstrating conformational changes following initial placement. Six subjects (mean age 74 years; 3 men) were selected for detailed reconstruction and computational hemodynamic analysis; 4 had at least 1 occluded chimney stent-graft. This subset of repairs was systematically analyzed to define the anatomic and hemodynamic impact of these changes and identify signature patterns associated with impending renovisceral stent-graft occlusion. Spatial and temporal analyses of cross-sectional area, centerline angle, intraluminal pressure, and wall shear stress (WSS) were performed within the superior mesenteric and renal artery chimney grafts used for repair. Results: Conformational changes in the chimney stent-grafts and associated perturbations, in both local WSS and pressure, were responsible for the 5 occlusions in the 13 stented branches. Anatomic and hemodynamic signatures leading to occlusion were identified within 1 month postoperatively, with a lumen area <14 mm2 (p=0.04), systolic pressure gradient >25 Pa/mm (p=0.03), and systolic WSS >45 Pa (p=0.03) associated with future chimney stent-graft occlusion. Conclusion: Chimney stent-grafts at increased risk for occlusion demonstrated anatomic and hemodynamic signatures within 1 month of juxtarenal chEVAR. Analysis of these parameters in the early postoperative period may be useful for identifying and remediating these high-risk stent-grafts.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Tricarico R; He Y; Laquian L; Scali ST; Tran-Son-Tay R; Beck AW; Berceli SA
  • Start Page

  • 880
  • End Page

  • 888
  • Volume

  • 24
  • Issue

  • 6