SiC particle cracking in powder metallurgy processed aluminum matrix composite materials

Academic Article

Abstract

  • Particle cracking is one of the key elements in the fracture process of particulate-reinforced metal-matrix composite (MMC) materials. The present study quantitatively examined the amount of new surface area created by particle cracking and the number fraction of cracked particles in a series of SiC-reinforced aluminum-matrix composite materials. These composite materials were fabricated by liquid-phase sintering and contained 9 vol pct of 23, 63, or 142 μm SiC. The matrix properties were varied by heat treating to either an underaged or peak-aged condition. In general, the new surface area created by particle cracking (S v ) and the number fraction of cracked particles (Fno) were linearly dependent on the local strain along the tensile specimen. Multiple cracks were frequently observed in the composites containing large particles. It was found that the new surface area created by particle cracking per unit strain was higher for the case of high-strength matrices and was not systematically affected by particle size within the range studied. The number fraction of cracked particles was affected by both particle size and matrix strength. A higher number fraction of particles cracked in the composites reinforced with large particles and with high matrix yield strengths. These results are interpreted in terms of the size of the particle defects, which is a function of particle size, and the critical flaw size necessary to crack a given particle, which is a function of the stress on the particle. The new surface area created by cracking and the fraction of cracked particles were related and are in good agreement for the large and medium sized particles. © 1995 The Minerals, Metals & Material Society.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Wang B; Janowski GM; Patterson BR
  • Start Page

  • 2457
  • End Page

  • 2467
  • Volume

  • 26
  • Issue

  • 9