Evaluation of Tau Imaging in Staging Alzheimer Disease and Revealing Interactions Between β-Amyloid and Tauopathy.

Academic Article

Abstract

  • IMPORTANCE: In vivo tau imaging may become a diagnostic marker for Alzheimer disease (AD) and provides insights into the pathophysiology of AD. OBJECTIVE: To evaluate the usefulness of [18F]-AV-1451 positron emission tomography (PET) imaging to stage AD and assess the associations among β-amyloid (Aβ), tau, and volume loss. DESIGN, SETTING, AND PARTICIPANTS: An imaging study conducted at Knight Alzheimer Disease Research Center at Washington University in St Louis, Missouri. A total of 59 participants who were cognitively normal (CN) (Clinical Dementia Rating [CDR] score, 0) or had AD dementia (CDR score, >0) were included. MAIN OUTCOMES AND MEASURES: Standardized uptake value ratio (SUVR) of [18F]-AV-1451 in the hippocampus and a priori-defined AD cortical signature regions, cerebrospinal fluid Aβ42, hippocampal volume, and AD signature cortical thickness. RESULTS: Of the 59 participants, 38 (64%) were male; mean (SD) age was 74 (6) years. The [18F]-AV-1451 SUVR in the hippocampus and AD cortical signature regions distinguished AD from CN participants (area under the receiver operating characteristic curve range [95% CI], 0.89 [0.73-1.00] to 0.98 [0.92-1.00]). An [18F]-AV-1451 SUVR cutoff value of 1.19 (sensitivity, 100%; specificity, 86%) from AD cortical signature regions best separated cerebrospinal fluid Aβ42-positive (Aβ+) AD from cerebrospinal fluid Aβ42-negative (Aβ-) CN participants. This same cutoff also divided Aβ+ CN participants into low vs high tau groups. Moreover, the presence of Aβ+ was associated with an elevated [18F]-AV-1451 SUVR in AD cortical signature regions (Aβ+ participants: mean [SD], 1.3 [0.3]; Aβ- participants: 1.1 [0.1]; F = 4.3, P = .04) but not in the hippocampus. The presence of Aβ+ alone was not related to hippocampal volume or AD signature cortical thickness. An elevated [18F]-AV-1451 SUVR was associated with volumetric loss in both the hippocampus and AD cortical signature regions. The observed [18F]-AV-1451 SUVR volumetric association was modified by Aβ status in the hippocampus but not in AD cortical signature regions. An inverse association between hippocampal [18F]-AV-1451 SUVR and volume was seen in Aβ+ participants (R2 = 0.55; P < .001) but not Aβ- (R2 = 0; P = .97) participants. CONCLUSIONS AND RELEVANCE: Use of [18F]-AV-1451 has a potential for staging of the preclinical and clinical phases of AD. β-Amyloid interacts with hippocampal and cortical tauopathy to affect neurodegeneration. In the absence of Aβ, hippocampal tau deposition may be insufficient for the neurodegenerative process that leads to AD.
  • Published In

  • JAMA Neurology  Journal
  • Keywords

  • Aged, Aged, 80 and over, Alzheimer Disease, Amyloid beta-Peptides, Carbolines, Female, Fluorodeoxyglucose F18, Humans, Magnetic Resonance Imaging, Male, Outcome Assessment, Health Care, Peptide Fragments, Positron-Emission Tomography, Severity of Illness Index, Tauopathies, tau Proteins
  • Digital Object Identifier (doi)

    Author List

  • Wang L; Benzinger TL; Su Y; Christensen J; Friedrichsen K; Aldea P; McConathy J; Cairns NJ; Fagan AM; Morris JC
  • Start Page

  • 1070
  • End Page

  • 1077
  • Volume

  • 73
  • Issue

  • 9