Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles

Academic Article

Abstract

  • Aim: Sphingosine-1-phosphate (S1P) influences resistance vessel function and is implicated in renal pathological processes. Previous studies revealed that S1P evoked potent vasoconstriction of the pre-glomerular microvasculature, but the underlying mechanisms remain incompletely defined. We postulated that S1P-mediated pre-glomerular microvascular vasoconstriction involves activation of voltage-dependent L-type calcium channels (L-VDCC) and the rho/rho kinase pathway. Methods: Afferent arteriolar reactivity was assessed in vitro using the blood-perfused rat juxtamedullary nephron preparation, and diameter was measured during exposure to physiological and pharmacological agents. Results: Exogenous S1P (10−9–10−5 mol L−1) evoked concentration-dependent vasoconstriction of afferent arterioles. Superfusion with nifedipine, a L-VDCC blocker, increased arteriolar diameter by 39 ± 18% of baseline and significantly attenuated the S1P-induced vasoconstriction. Superfusion with the rho kinase inhibitor, Y-27632, increased diameter by 60 ± 12% of baseline and also significantly blunted vasoconstriction by S1P. Combined nifedipine and Y-27632 treatment significantly inhibited S1P-induced vasoconstriction over the entire concentration range tested. In contrast, depletion of intracellular Ca2+ stores with the Ca2+-ATPase inhibitors, thapsigargin or cyclopiazonic acid, did not alter the S1P-mediated vasoconstrictor profile. Scavenging reactive oxygen species (ROS) or inhibition of nicotinamide adenine dinucleotide phosphate oxidase activity significantly attenuated S1P-mediated vasoconstriction. Conclusion: Exogenous S1P elicits potent vasoconstriction of rat afferent arterioles. These data also demonstrate that S1P-mediated pre-glomerular vasoconstriction involves activation of L-VDCC, the rho/rho kinase pathway and ROS. Mobilization of Ca2+ from intracellular stores is not required for S1P-mediated vasoconstriction. These studies reveal a potential role for S1P in the modulation of renal microvascular tone.
  • Digital Object Identifier (doi)

    Author List

  • Guan Z; Wang F; Cui X; Inscho EW
  • Volume

  • 222
  • Issue

  • 2