Recursive expectation-maximization clustering: A method for identifying buffering mechanisms composed of phenomic modules

Academic Article

Abstract

  • Interactions between genetic and/or environmental factors are ubiquitous, affecting the phenotypes of organisms in complex ways. Knowledge about such interactions is becoming rate-limiting for our understanding of human disease and other biological phenomena. Phenomics refers to the integrative analysis of how all genes contribute to phenotype variation, entailing genome and organism level information. A systems biology view of gene interactions is critical for phenomics. Unfortunately the problem is intractable in humans; however, it can be addressed in simpler genetic model systems. Our research group has focused on the concept of genetic buffering of phenotypic variation, in studies employing the single-cell eukaryotic organism, S. cerevisiae. We have developed a methodology, quantitative high throughput cellular phenotyping (Q-HTCP), for high-resolution measurements of gene-gene and gene-environment interactions on a genome-wide scale. Q-HTCP is being applied to the complete set of S. cerevisiae gene deletion strains, a unique resource for systematically mapping gene interactions. Genetic buffering is the idea that comprehensive and quantitative knowledge about how genes interact with respect to phenotypes will lead to an appreciation of how genes and pathways are functionally connected at a systems level to maintain homeostasis. However, extracting biologically useful information from Q-HTCP data is challenging, due to the multidimensional and nonlinear nature of gene interactions, together with a relative lack of prior biological information. Here we describe a new approach for mining quantitative genetic interaction data called recursive expectation-maximization clustering (REMc). We developed REMc to help discover phenomic modules, defined as sets of genes with similar patterns of interaction across a series of genetic or environmental perturbations. Such modules are reflective of buffering mechanisms, i.e., genes that play a related role in the maintenance of physiological homeostasis. To develop the method, 297 gene deletion strains were selected based on gene-drug interactions with hydroxyurea, an inhibitor of ribonucleotide reductase enzyme activity, which is critical for DNA synthesis. To partition the gene functions, these 297 deletion strains were challenged with growth inhibitory drugs known to target different genes and cellular pathways. Q-HTCP-derived growth curves were used to quantify all gene interactions, and the data were used to test the performance of REMc. Fundamental advantages of REMc include objective assessment of total number of clusters and assignment to each cluster a log-likelihood value, which can be considered an indicator of statistical quality of clusters. To assess the biological quality of clusters, we developed a method called gene ontology information divergence z-score (GOid_z). GOid_z summarizes total enrichment of GO attributes within individual clusters. Using these and other criteria, we compared the performance of REMc to hierarchical and K-means clustering. The main conclusion is that REMc provides distinct efficiencies for mining Q-HTCP data. It facilitates identification of phenomic modules, which contribute to buffering mechanisms that underlie cellular homeostasis and the regulation of phenotypic expression. © 2010 American Institute of Physics.
  • Digital Object Identifier (doi)

    Author List

  • Guo J; Tian D; McKinney BA; Hartman JL
  • Volume

  • 20
  • Issue

  • 2