Segmentally distinct effects of depolarization on intracellular [Ca2+] in renal arterioles

Academic Article


  • Experiments were performed to determine the influence of depolarization on intracellular Ca2+ concentration ([Ca2+](i)) in renal arterioles and the possible role of voltage-gated Ca2+ channels in these responses. Glomeruli with attached arterioles and thick ascending limb were dissected from rabbit kidney and loaded with fura 2. [Ca2+](i) of nonperfused arterioles was monitored using a microscope-based dual-excitation wavelength spectrofluorometry system. Afferent arteriolar [Ca2+](i) averaged 150 ± 11 nM (n = 20) when bathed in Ringer solution containing 1.5 mM Ca2+ and 5 mM K+. Replacement of the normal Ringer solution with one containing 100 mM K+ significantly increased afferent arteriolar [Ca2+](i) to 196 ± 12 nM. This response was abolished in the absence of extracellular Ca2+. In the presence of 1 μM nifedipine, 100 mM K+ elicited a 10% decrease in afferent arteriolar [Ca2+](i) (P < 0.05). Thus nifedipine reversed the afferent [Ca2+](i) response to depolarization, implicating voltage-gated Ca2+ channels as the influx pathway. In contrast to the behavior of afferent arterioles, the 100 mM K+ solution reduced efferent arteriolar [Ca2+](i) from 188 ± 17 to 148 ± 13 nM (n = 11, P < 0.01), an effect that was not influenced by nifedipine. These observations support a role for voltage- gated Ca2+ channels in eliciting depolarization-induced increases in afferent arteriolar [Ca2+](i) while failing to provide evidence for operation of such a mechanism at efferent arteriolar sites.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Author List

  • Carmines PK; Fowler BC; Bell PD
  • Volume

  • 265
  • Issue

  • 5 34-5