Increased protein expression of the PTEN tumor suppressor in the presence of constitutively active notch-1

Academic Article

Abstract

  • Mammalian Notch-1 is part of an evolutionarily conserved family of transmembrane receptors best known for involvement in cell fate decisions. Mutations that result in Notch-1 activation result in T-lineage oncogenesis. In other cell lineages, however, studies have indicated that cooperation with cellular signaling pathways, such as Ras, is necessary for Notch-mediated oncogenesis and in some settings, Notch-1 has been reported to function as a tumor suppressor. In order to test the hypothesis that the Notch-1 pathway exhibits cross-talk with Ras/Raf/MEK/ERK, the constitutively active cytoplasmic portion of Notch-1 was introduced into 293 HEK fibroblasts via retroviral transduction. ERK-1,-2 activation was markedly increased in cells expressing constitutively active Notch-1. These cells exhibited a more rounded morphology as compared to 293 cells transduced with an empty vector or parental 293 cells. These observations correlated with decreased total and phosphorylated focal adhesion kinase protein (FAK). Subsequent examination of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) revealed that total and phosphorylated PTEN protein was elevated in cells expressing constitutively active Notch-1. Loss of Akt phosphorylation was also observed in cells bearing activated Notch-1. Two potential binding sites for the Notch effector CBF-1 were identified in the human PTEN promoter sequence. A PTEN promoter luciferase reporter exhibited increased activity in the presence of Notch-1 signaling. These data indicate that Notch-1 can participate in cross-talk with other signaling pathways such as Ras/Raf/MEK/ERK through the regulation of the PTEN tumor suppressor. ©2005 Landes Bioscience.
  • Published In

  • Cell Cycle  Journal
  • Digital Object Identifier (doi)

    Author List

  • Chappell WH; Green TD; Spengeman JD; McCubrey JA; Akula SM; Bertrand FE
  • Start Page

  • 1389
  • End Page

  • 1395
  • Volume

  • 4
  • Issue

  • 10